На главную страницу!  
Поиск  
  win koi8 mac iso dos 
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        Тесты     Последние поступления
   Геология >> Геохимические науки >> Петрология | Популярные статьи
 Напишите комментарий  Добавить новое сообщение

ГЕОДИНАМИКА ДОКЕМБРИЙСКОЙ ЗЕМНОЙ КОРЫ

Л.Л. Перчук  (кафедра петрологии МГУ им. М.В. Ломоносова)
Оглавление

RIS6.JPG (31344 bytes)

Рис.6.Модель образования развитой континентальной коры по механизму цепной реакции.

В качестве примера рассмотрим четырехритмовый разрез с трехслойным строением каждого ритма (рис. 6). Первичный разрез в целом гравитационно устойчив. Но отдельные ритмы в нем потенциально не устойчивы, так как плотность слоев возрастает вверх по разрезу. Термальное возмущение пород вдоль РТ-тренда группы 3 на рис. 2 приводит к гравитационному перераспределению слоев в каждом ритме. В результате лавинообразного процесса значительная часть менее плотных и менее вязких пород всплывает к поверхности, а более плотный материал опускается в нижнюю часть коры. Подробнее механизм процесса гравитационного перераспределения подробно рассмотрен в работе [3]. Там приведен не только математический аппарат описания процесса гравитационного перераспределения пород , но и его приложение к конкретным геологическим объектам. Все они представлены гигантскими телами, форма которых в разрезе очень напоминает рис.4 и 5.

Кроме рассмотренных выше метаморфических пород, образованных в условиях нормального РТ-градиента, существуют комплексы, сформированные при аномально высоких значениях давления. Например, в последние годы открыты алмазоносные метаморфические комплексы. Причем сложены они обычными регионально метаморфизованными породами с реликтовыми минералами, которые могли возникнуть лишь при очень высоких значениях давления, соответствующих глубинам более 120 км. Среди таких минералов - мелкий алмаз, часто встречающийся в сростках с цирконом (Zr2SiO4) и Ca-Mg карбонатами, коэсит (высокобарная форма кремнезема), глиноземистые сфен (твердый раствор систем Al2O3 -СаТiO3) и рутил (ТiO2- Al2O3), а также калийсодержащий клинопироксен (твердый раствор Ca(Mg,Fe)Si2O6 - KAlSi2O6). Такие аномальные явления пока не нашли физического объяснения: нам не известен механизм, который позволил бы погрузить крупные массы континентальной коры в верхнюю мантию на глубину более 120 км. и вернуть их на дневную поверхность. Петрологи настойчиво работают сейчас на этой и подобными проблемами, стараясь разгадать загадки, задаваемые природой [10].

 

Заключение

В этой статье мы рассмотрели примеры применения минеральной термобарометрии для двух реологически различных типов горных пород - магматических и метаморфических. Из этого обзора очевидно, сколь широк спектр приложения теории фазового соответствия [1]. На первый взгляд локальное химическое равновесие минералов в объемах микронного масштаба, с одной стороны, и перемещение в пространстве десятков, а порой и сотен тысяч кубических километров горных пород - с другой, являются несовместимыми проблемами. Однако тщательный анализ минеральных равновесий позволяет совместить эти объекты и достаточно корректно решить сложную геологическую задачу. И чем она сложнее, тем интересней путь к ее решению. Он неизменно приводит к новым открытиям.

Следующая страница| Назад

Л.Л. Перчук

 См. также
Диссертации Р-Т тренды и модель формирования гранулитовых комплексов докембрия:
Диссертации Р-Т тренды и модель формирования гранулитовых комплексов докембрия: Р-Т тренды
Научные статьи ТЕКТОНИЧЕСКОЕ РАЙОНИРОВАНИЕ И СТРУКТУРНО-ФОРОМАЦИОННЫЕ КОМПЛЕКСЫ ДОКЕМБРИЯ РОСТОВСКОЙ ОБЛАСТИ (Объяснительная записка к тектонической карте докембрия Ростовской области, масштаба 1:1 000 000)
Диссертации Геологическое строение Центральной Атлантики: разломы, вулканические сооружения и деформации океанского дна : head1
Диссертации Геологическое строение Центральной Атлантики: разломы, вулканические сооружения и деформации океанского дна : head2
Диссертации Минерагения благородных металлов и алмазов северо-восточной части Балтийского щита:

Проект осуществляется при поддержке:
Научной Сети, Российского Фонда Фундаментальных Исследований
Международной Соросовской Программы Образования в области Точных Наук