Авторы: Ю.К.Егоров-Тисменко, Г.П.Литвинская
( Под редакцией В.С.Урусова)
|
Содержание |
Глава I. ВВЕДЕНИЕ В ТЕОРИЮ СИММЕТРИИ
I.1. Определение симметрии
Понятие "симметрия" (греч. symmetria - соразмерность), по словам одного из крупнейших математиков ХХ в. Германа Вейля (1885 - 1955), "является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство"[23]. Обычно под словом "симметрия" понимается гармония пропорций - нечто уравновешенное, не ограниченное пространственными объектами (например, в музыке, поэзии и т.п.). С другой стороны, это понятие имеет и чисто геометрический смысл, заключающийся в закономерной повторяемости в пространстве равных фигур или их частей. Как писал Е.С.Федоров (1901), "симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением"[49].
Однако, говоря о симметричных фигурах, следует различать два вида равенства: конгруэнтное (греч. congruens - совмещающийся) и энантиоморфное - зеркально равное (греч. enantios - противоположный, morphe - форма). В первом случае подразумеваются фигуры или их части, равенство которых можно выявить простым совмещением - наложением друг на друга, т.е. "собственным" движением, переводящим левую (Л) фигуру (например, левый винт, руку) в левую, правую (П) - в правую, при котором все точки одной фигуры совпадают с соответствующими точками другой. Во втором случае - равенство выявляется с помощью отражения - движения, переводящего объект в его зеркальное изображение (левое - в правое и наоборот). При этом все точки пространственной фигуры становятся попарно симметричными относительно плоскости. В результате таких преобразований (движений) объект совмещается сам с собой, т.е. преобразуется в себя. Иными словами, он инвариантен по отношению к этому преобразованию, а следовательно, симметричен. Само преобразование, выявляющее симметричность объекта, называемое преобразованием симметрии, сохраняет неизменными метрические свойства частей объекта, а значит, и расстояния между любой парой их точек. Таким образом, объекты можно считать симметрично равными, если все точки одного из них переводятся в соответствующие точки другого по единому правилу.
Геологический факультет МГУ
|