На главную страницу!  
Поиск  
  win koi8 mac iso dos 
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        Тесты     Последние поступления
   Геология >> Геофизика >> Геофизические методы поисков и разведки месторождений полезных ископаемых | Книги
 Напишите комментарий  Добавить новое сообщение

Геофизические методы исследования земной коры.

В.К. Хмелевской (Международный университет природы, общества и человека "Дубна")
Международный университет природы, общества и человека "Дубна", 1997 г.
Содержание

6.2.4. Экогидрогеофизика.

Экогидрогеофизика предназначена для изучения карстово-суффозионных явлений, изменения динамики и химизма подземных вод. Карстовые и суффозионные явления связаны с растворением скальных (карбонатных, гипсоносных, соленосных пород) и вымыванием рыхлых пород подземными водами. Эти явления встречаются почти на одной трети территории суши, нередко изменяя поверхностные формы рельефа. Благоприятствуют развитию карста тектоническая трещиноватость пород и ее увеличение вследствие природно-техногенных причин, интенсивное движение подземных вод и изменения гидрогеологического режима. Например, за счет подземного водоснабжения и возникающего вследствие этого понижения уровня грунтовых вод проникающие в породы загрязненные атмосферные и поверхностные воды оказываются более агрессивными и увеличивают скорость выщелачивания. В результате образуются как поверхностные карстовые формы (карстовые воронки, котловины, колодцы, шахты и т.п.), так и глубинные (подземные полости, каналы, пещеры, гроты). Часто они заполнены водой или глинистыми продуктами выветривания пород (см. 5.3).

Вследствие карстово-суффозионных процессов и явлений уменьшается устойчивость геологической среды, что приводит к катастрофическим последствиям (просадки, провалы, деформации сооружений) (см. 3.3.5).

Для изучения устойчивости геологической среды перед геофизикой ставятся следующие задачи [Огильви А.А., 1990]:

  • Выделение регионов, где встречаются растворимые породы, оценка литологии и мощности перекрывающих пород, самих карстующихся пород и глубины залегания базиса коррозии, т.е. поверхности скальных пород, ниже которой закарстованности нет.
  • Изучение гидрогеологических условий: наличия водоносных и водоупорных пород, пластовых и трещинно-карстовых вод, их минерализации, динамики (скоростей движения и фильтрации).
  • Выявление трещинно-карстовых зон, отдельных карстовых форм, полостей и т.п.
  • Оценка динамики карстово-суффозионных процессов и устойчивости закарстованных территорий.

Возможность решения поставленных задач геофизическими методами определяется различием геофизических свойств закарстованных скальных пород по сравнению с теми же породами, но не затронутыми карстовыми процессами (ниже базиса коррозии), и перекрывающими, как правило, песчано-глинистыми породами. Закарстованные породы, несмотря на наличие в них полостей, заполненных воздухом, отличаются тем не менее пониженными удельными электрическими сопротивлениями и скоростями распространения упругих волн, существованием аномалий естественного электрического поля, повышением гамма-активности. Это объясняется наличием в них глинистых пород и трещинно-карстовых подземных вод, характеризующихся пониженными удельными электрическими сопротивлениями, а часто и скоростями упругих волн. Глинистые породы повышают гамма-активность, измеряемую при гамма-съемках, а трещиноватые - альфа-активность, измеряемую при эманационной (радоновой) съемке.

Решение первой задачи производится геофизическими методами, используемыми для картирования. В условиях круто слоистых сред применяются методы гравиразведки, магниторазведки, электромагнитного профилирования (методами естественного поля (ЕП), сопротивлений (ЭП), низкочастотного (НЧП) и высокочастотного (РВП)), гамма- и эманационные съемки. В условиях горизонтально и полого залегающих пород используются электромагнитные зондирования (вертикальные (ВЭЗ), частотные (ЧЗ) или становлением поля (ЗС) или другие), а также сейсморазведка методом преломленных (МПВ) и отраженных (МОВ) волн (см. 3.4).

Решение задач 3 и 4 проводится одиночными или режимными электромагнитными профилированиями, сейсморазведкой МПВ. С помощью скважинных геофизических исследований изучаются физические свойства горных пород вокруг скважин и между скважинами, определяются скорости движения и фильтрации подземных вод. Применение не менее двух методов, например одного электроразведочного и одного сейсмического, может дать более достоверное решение поставленных задач (см. 1.3).

В качестве примера эффективности скважинных геофизических исследований при изучении карстово-суффозионных процессов можно привести результаты режимных наблюдений на территории г.Москвы. На рис. 6.2 видно, что полости в закарстованных известняках, заполненные переотложенным глинистым материалом естественных электрического ( $\Delta U _{ЕП}$ ) и радиоактивного ($J _{\gamma }$ ) полей, интервального времени ( $\Delta t$) по акустическим исследованиям и кажущегося сопротивления ( $\rho _{к}$ ) по данным метода сопротивлений, отличаются заметными аномалиями. Процесс вымывания глинистого заполнителя из полостей, возникающий под влиянием интенсивной откачки подземных вод, особенно хорошо можно проследить по изменению комплексного показателя $\theta$ , рассчитанного на основании суммирования контрастностей $Q _{i}$ (отношений аномалий к нормальному полю) всех измеренных геофизических параметров: $\theta = \sum\limits_{i=1}^n |Q_i|$, где $n$ - число методов, входящих в комплекс. В данном примере $n$ = 4. График изменения значений $\theta$ , рассчитанный для серии наблюдений, выполненных в последовательные моменты времени $t _{1} , t _{2} , t _{3}$ с интервалом 3 месяца, дает возможность оценить время активизации суффозионного процесса.

Рис. 6.2. Результаты комплексных скважинных геофизических наблюдений при изучении карстово-суффозионного процесса: а - геологический разрез, б - каротажные диаграммы и графики изменения во времени комплексного показателя $\theta = f(t)$, в - режим средних значений комплексного показателя $\theta$ в изучаемом интервале глубин; 1 - пески, 2 - глины, 3 - закарстованные известняки, 4 - карстовые полости, 5 - уровень грунтовых вод

Вопросы изучения динамики подземных вод, их химизма рассмотрены в 5.2. С ними тесно связаны проблемы истощения подземных вод и их загрязнения, подтопления городов, промышленных объектов, сельскохозяйственных земель (заболачивание), вторичное засоление мелиорируемых земель и др. Особенности решения этих проблем сводятся к периодическим повторениям геофизических съемок, сопоставлению с результатами опытных гидрогеологических наблюдений, получению совместных гидрогеофизических рекомендаций.

6.2.5. Экокриология.

Криогенные (мерзлотно-геологические) процессы проявляются в районах распространения многолетнемерзлых пород и замерзшей воды в порах и трещинах пород. Изучение строения геологического разреза в условиях криолитозоны сводится к определению мощности деятельного слоя, который в летний период оттаивает на 1-2 м, и надмерзлотных вод; изучению строения и мощности мерзлых пород, наличия в них и под ними межмерзлотных и подмерзлотных вод; картированию поверхностных талых пород; выявлению зон термокарста, бугров пучения, наледей, зон течения мерзлых пород на склонах (солифлюкция) и каменных потоков (курумы) и других неблагоприятных криогенных процессов (см. 5.4). Для изучения этих явлений широко используются геофизические методы. Важную роль с точки зрения экологии играют периодические повторения геофизических съемок, т.е. организация экомониторинга криогенных процессов, особенно в промышленно освоенных районах.

Под воздействием инженерно-технических сооружений в районах распространения многолетнемерзлых горных пород тепловой режим постепенно нарушается, что при приближении температур к 0 $^\circ$С ведет к деградации мерзлоты и протаиванию пород. По геологической устойчивости массивов горных пород мерзлые породы близки к скальным, а талые - к рыхлым. Как отмечалось выше (см. 5.4), одни и те же горные породы в мерзлом и талом состоянии различаются в 1,5-5 раз по скоростям распространения упругих волн и в 2-1000 раз по удельным электрическим сопротивлениям. В мерзлых породах эти параметры выше, чем в талых. Поэтому основными методами экомониторинга многолетнемерзлых горных пород на объектах промышленного и гражданского строительства являются сейсморазведка (чаще методом преломленных волн) и электромагнитные зондирования (чаще вертикальные электрические, частотные или радиолокационные), выполняемые в режиме периодических повторений. Обязательной является и термометрия (см. 5.4).

Назад| Вперед

Геологический факультет МГУ

 См. также
Книги Геофизические методы исследования земной коры
Книги Геофизические методы исследования земной коры: Геофизические методы исследования земной коры.
Тезисы Роль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований: Роль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований
Биографии ученых Богословский Вадим Александрович
Биографии ученых Горбачев Юрий Ильич
Биографии ученых Огильви Александр Александрович
Биографии ученых Карус Евгений Виллиамович
Научные статьи Глубинное строение Южной Камчатки по геофизическим данным:
Научные статьи Геомагнитные исследования позднекайнозойских подводных вулканов северной части Курильской островной дуги:
Интересные ссылки Кафедра геофизических методов исследования земной коры МГУ

Проект осуществляется при поддержке:
Научной Сети, Российского Фонда Фундаментальных Исследований
Международной Соросовской Программы Образования в области Точных Наук