На главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
 
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геохимические науки >> Петрология | Популярные статьи
 Обсудить в форуме  Добавить новое сообщение

СОСТАВ И СТРОЕНИЕ МАНТИИ ЗЕМЛИ

Д.Ю. Пущаровский, Ю.М. Пущаровский  (МГУ им. М.В. Ломоносова)
Опубликовано в Соросовском Образовательном Журнале. 1998, N11, стр. 111-119.
Оглавление

Состав мантии ниже границы 670 км

Проведенные в последние два-три десятилетия исследования структурных переходов минералов с использованием рентгеновских камер высокого давления позволили смоделировать некоторые особенности состава и структуры геосфер глубже границы 670 км. В этих экспериментах исследуемый кристалл помещается между двумя алмазными пирамидами (наковальнями) [4], при сжатии которых
создаются давления, соизмеримые с давлениями внутри мантии и земного ядра. Тем не менее в отношении этой части мантии, на долю которой приходится более половины всех недр Земли, по-прежнему остается много вопросов. В настоящее время большинство исследователей согласны с идеей о том, что вся эта глубинная (нижняя в традиционном понимании) мантия в основном состоит из перовскитоподобной фазы (Mg,Fe)SiO3, на долю которой приходится около 70% ее объема (40% объема всей Земли), и магнезиовюстита (Mg, Fe)O  (~20 %). Оставшиеся 10% составляют стишовит и оксидные фазы, содержащие Ca, Na, K, Al и Fe, кристаллизация которых допускается в структурных типах ильменита-корунда (твердый раствор (Mg, Fe)SiO3-Al2O3), кубического перовскита (CaSiO3) и Са-феррита (NaAlSiO4). Образование этих соединений связано с различными структурными трансформациями минералов верхней мантии. При этом одна из основных минеральных фаз относительно гомогенной оболочки, лежащей в интервале глубин 410-670 км, - шпинелеподобный рингвудит трансформируется в ассоциацию (Mg, Fe)-перовскита и Mg-вюстита на рубеже 670 км, где давление составляет ~24 ГПа. Другой важнейший компонент переходной зоны - представитель семейства граната пироп Mg3Al2Si3O12 испытывает превращение с образованием ромбического перовскита (Mg, Fe)SiO3 и твердого раствора корунда-ильменита (Mg, Fe)SiO3 - Al2O3 при несколько больших давлениях. С этим переходом связывают изменение скоростей сейсмических волн на рубеже 850-900 км, соответствующем одной из промежуточных сейсмических границ. Трансформация Са-граната андрадита при меньших давлениях ~21 ГПа приводит к образованию еще одного упомянутого выше важного компоCa3Fe23+ Si3O12
нента нижней мантии - кубического Са-перовскита CaSiO3 . Полярное отношение между основными минералами этой зоны (Mg,Fe)- перовскитом   (Mg,Fe)SiO3 и Mg-вюститом (Mg, Fe)O варьирует в достаточно широких пределах и на глубине ~1170 км при давлении ~29 ГПа и температурах 2000-2800 0С меняется от 2 : 1 до 3 : 1.

Исключительная стабильность MgSiO3 со структурой типа ромбического перовскита в широком диапазоне давлений, соответствующих глубинам низов мантии, позволяет считать его одним из главных компонентов этой геосферы. Основанием для этого заключения послужили эксперименты, в ходе которых образцы Mg-перовскита MgSiO3 были подвергнуты давлению, в 1,3 млн раз превышающему атмосферное, и одновременно на образец, помещенный между алмазными наковальнями, воздействовали лазерным лучом с температурой около 2000 0С.
Таким образом смоделировали условия, существующие на глубинах ~2800 км, то есть вблизи нижней границы нижней мантии. Оказалось, что ни во время, ни после эксперимента минерал не изменил свои структуру и состав. Таким образом, Л. Лиу, а также Е. Ниттл и Е. Жанлоз пришли к выводу, согласно которому стабильность Mg-перовскита позволяет рассматривать его как наиболее распространенный минерал на Земле, составляющий, по-видимому, почти половину ее массы.

Не меньшей устойчивостью отличается и вюстит FexO, состав которого в условиях нижней мантии характеризуется значением стехиометри- ческого коэффициента х < 0,98, что означает одновременное присутствие в его составе Fe2+ и Fe3+. При этом, согласно экспериментальным данным, температура плавления вюстита на границе нижней мантии и слоя D", по данным Р. Болера (1996), оценивается в ~5000 K, что намного выше 3800 0С, предполагаемой для этого уровня (при средних температурах мантии ~2500 0С в основании нижней мантии допускается повышение температуры приблизительно на 1300 0С). Таким образом, вюстит должен сохраниться на этом рубеже в твердом состоянии, а признание фазового контраста между твердой нижней мантией и жидким внешним ядром требует более гибкого подхода
и уж во всяком случае не означает четко очерченной границы между ними.

Следует отметить, что в преобладающих на больших глубинах перовскитоподобных фазах может содержаться весьма ограниченное количество
Fe, а повышенные концентрации Fe среди минералов глубинной ассоциации характерны лишь для магнезиовюстита. При этом для магнезиовюстита доказана возможность перехода под воздействием высоких давлений части содержащегося в нем двухвалентного железа в трехвалентное, остающееся в структуре минерала, с одновременным выделением соответствующего количества нейтрального железа. На основе этих данных сотрудники геофизической лаборатории Иститута Карнеги Х. Мао, П. Белл и Т. Яги выдвинули новые идеи о дифференциации вещества в глубинах Земли. На первом этапе благодаря гравитационной неустойчивости магнезиовюстит погружается на глубину, где под воздействием давления из него выделяется некоторая часть железа в нейтральной форме. Остаточный магнезиовюстит, характеризую- щийся более низкой плотностью, поднимается в верхние слои, где вновь смешивается с перовскитоподобными фазами. Контакт с ними сопровождается восстановлением стехиометрии (то есть целочисленного отношения элементов в химической формуле) магнезиовюстита и приводит к возможности повторения описанного процесса. Новые данные позволяют несколько расширить набор вероятных для глубокой мантии химических элементов. Например, обоснованная Н. Росс (1997) устойчивость магнезита при давлениях, соответствующих глубинам ~900 км, указывает на возможное присутствие углерода в ее составе.

Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов, формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0С перестройке SiO2 со структурой стишовита в структурный тип CaCl2 (ромбический аналог рутила TiO2), а 2000 км - его
последующему преобразованию в фазу со структурой, промежуточной между a-PbO2 и ZrO2 , характеризующуюся более плотной упаковкой кремнийкислородных октаэдров (данные Л.С. Дубровинского с соавторами). Также начиная с этих глубин (~2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного MgSiO3, сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема. При несколько большем давлении (~96 ГПа) и температуре 800 0С установлено проявление политипии у FeO, связанное с образованием структурных фрагментов типа никелина NiAs, чередующихся с антиникелиновыми доменами, в которых атомы Fe расположены в позициях
атомов As, а атомы О - в позициях атомов Ni. Вблизи границы D" происходит трансформация Al2O3 со структурой корунда в фазу со структурой Rh2O3, экспериментально смоделированная при давлениях ~100 ГПа, то есть на глубине ~2200-2300 км. ' использованием метода мессбауэровской спектроскопии при таком же давлении обоснован переход из высокоспинового (HS) в низкоспиновое состояние (LS) атомов Fe в структуре магнезиовюстита, то есть изменение их электронной структуры. В связи с этим следует подчеркнуть, что структура вюстита
FeО при высоком давлении характеризуется нестехиометрией состава, дефектами атомной упаковки, политипией, а также изменением магнитного упорядочения, связанного с изменением электронной структуры (HS => LS - переход) атомов Fe. Отмеченные особенности позволяют рассматривать вюстит как один из наиболее сложных минералов с необычными свойствами, определяющими специфику
обогащенных им глубинных зон Земли вблизи границы D".

Тетрагональная структура Fe7S
Рис. 3. Тетрагональная струк- тура Fe7S-возможного компо- нента внутреннего (твердого) ядра, по Д.М. Шерману (1997)

Сейсмологические измерения указывают на то, что и внутреннее (твердое) и внешнее (жидкое) ядра Земли характеризуются меньшей плотностью по сравнению со значением, получаемым на основе модели ядра, состоящего только из металлического железа при тех же физико-химических параметрах. Это уменьшение плотности большинство исследователей связывают с присутствием в ядре таких элементов, как Si, O, S и даже О, образующих сплавы с железом. Среди фаз, вероятных для таких "фаустовских" физико-химических условий (давления ~250 ГПа и температуры 4000-6500 0С), называются Fe3S с хорошо известным структурным типом Cu3Au и Fe7S, структура которого изображена на рис. 3. Другой предполагаемой в ядре фазой является b-Fe, структура которой характеризуется четырехслойной плотнейшей упаковкой атомов Fe. Температура плавления этой фазы оценивается в 5000 0С при давлении 360 ГПа. Присутствие водорода в ядре долгое время вызывало дискуссию из-за его низкой растворимости в железе при атмосферном давлении. Однако недавние экспериме- нты (данные Дж. Бэддинга, Х. Мао и Р. Хэмли (1992)) позволили установить, что гидрид железа FeH может сформироваться при высоких температурах и давлениях и оказывается устойчив при давлениях, превышающих 62 ГПа, что соответствует глубинам ~1600 км. В этой связи присутствие значительных количеств (до 40 мол. %) водорода в ядре вполне допустимо и снижает его плотность до значений, согласующихся с данными сейсмологии.

Можно прогнозировать, что новые данные о структурных изменениях минеральных фаз на больших глубинах позволят найти адекватную интерпретацию и другим важнейшим геофизическим границам, фиксируемым в недрах Земли. Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород. Минеральные преобразования отмечаются также и на глубинах ~850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.

Следующая страница| Назад

Соросовский Образовательный Журнал

 См. также
Книги Основы геологии. (Короновский Н.В., Якушова А.Ф.):
Книги Основы геологии. (Короновский Н.В., Якушова А.Ф.): каменные метеориты
Книги Учебник по экспериментальной и технической петрологии: Образование Земли
Анонсы конференций "Сейсмо-петрология и сейсмо-геотермия: оценки состава и температуры в коре и верхней мантии на основе сейсмических наблюдений": д.г.-м.н. С.В. Соболев (заседание Научного Совета РАН по проблемам геохимии)
Книги Учебник по экспериментальной и технической петрологии: зарождение солнечной системы
Популярные статьи Магматизм Земли: механизм магматических явлений
Диссертации Геология и эволюция земной коры восточной Антарктиды в протерозое-раннем палеозое:
Диссертации Геология и эволюция земной коры восточной Антарктиды в протерозое-раннем палеозое: Основные защищаемые положения и их обоснование.
Книги Геофизические методы исследования земной коры. Часть 2 :
Книги Рингвуд А. Е. "Состав и петрология мантии Земли":
Книги Геофизические методы исследования земной коры. Часть 2 :
Популярные статьи Магматическое "окно" в глубины Земли : Введение, или в чем же ошибался инженер Гарин.
Диссертации Фазовые соотношения, структурные и электронные свойства ферропериклаза при высоких давлении и температуре: Глава 1. Литературный обзор. Структурные и физические свойства и фазовый состав в системе MgO-FeO, значение ферропериклаза в строении мантии Земли.
Диссертации Фазовые соотношения, структурные и электронные свойства ферропериклаза при высоких давлении и температуре:

Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   
Rambler's Top100